Parallel Construction of Finite Solvable Groups
نویسنده
چکیده
An algorithm for the construction of nite solvable groups of small order is given. A parallelized version under PVM is presented. Diierent models for parallelization are discussed. A nite group G is called solvable, if there exists a chain of normal subgroups
منابع مشابه
Some connections between powers of conjugacy classes and degrees of irreducible characters in solvable groups
Let $G$ be a finite group. We say that the derived covering number of $G$ is finite if and only if there exists a positive integer $n$ such that $C^n=G'$ for all non-central conjugacy classes $C$ of $G$. In this paper we characterize solvable groups $G$ in which the derived covering number is finite.
متن کاملClassification of solvable groups with a given property
In this paper we classify all finite solvable groups satisfying the following property P5: their orders of representatives are set-wise relatively prime for any 5 distinct non-central conjugacy classes.
متن کاملOn non-normal non-abelian subgroups of finite groups
In this paper we prove that a finite group $G$ having at most three conjugacy classes of non-normal non-abelian proper subgroups is always solvable except for $Gcong{rm{A_5}}$, which extends Theorem 3.3 in [Some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable, Acta Math. Sinica (English Series) 27 (2011) 891--896.]. Moreover, we s...
متن کاملON FINITE GROUPS IN WHICH SS-SEMIPERMUTABILITY IS A TRANSITIVE RELATION
Let H be a subgroup of a finite group G. We say that H is SS-semipermutable in Gif H has a supplement K in G such that H permutes with every Sylow subgroup X of Kwith (jXj; jHj) = 1. In this paper, the Structure of SS-semipermutable subgroups, and finitegroups in which SS-semipermutability is a transitive relation are described. It is shown thata finite solvable group G is a PST-group if and on...
متن کاملSolvable Groups of Exponential Growth and Hnn Extensions
An extraordinary theorem of Gromov, [4], characterizes the finitely generated groups of polynomial growth; a group has polynomial growth iff it is nilpotent by finite. This theorem went a long way from its roots in the class of discrete subgroups of solvable Lie groups. Wolf, [11], proved that a polycyclic group of polynomial growth is nilpotent by finite. This theorem is primarily about linear...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996